Section 14.4, Problem 28

A batter hits a baseball 3 ft above the ground toward the center field fence, which is 10 ft high and 400 ft from home plate. The ball leaves the bat with speed $115 \mathrm{ft} / \mathrm{s}$ at an angle 50° above the horizontal. Does the ball clear the fence?

Let the x-coordinate represent the distance from home plate, while the y-coordinate denotes height above the ground. We use the foot as the unit of distance and the second as the unit of time. The intial position is then

$$
\begin{equation*}
\vec{r}_{0}=x_{0} \vec{i}+y_{0} \vec{j}=3 \vec{j} \tag{1}
\end{equation*}
$$

The initial velocity \vec{v}_{0} is given in terms of the speed $\left|\vec{v}_{0}\right|=115 \mathrm{ft} / \mathrm{s}$ and the angle $\theta=50^{\circ}$ above the horizontal. Thus

$$
\begin{equation*}
\vec{v}_{0}=\left|\vec{v}_{0}\right|(\cos \theta \vec{i}+\sin \theta \vec{j})=115\left(\cos 50^{\circ} \vec{i}+\sin 50^{\circ} \vec{j}\right) \tag{2}
\end{equation*}
$$

The acceleration is $\vec{a}=-g \vec{j}$, where g is the strength of the gravitational field, measured in $\mathrm{ft} / \mathrm{s}^{2}$. In these units, $g \approx 32.174$.

Using the formula for motion with constant acceleration:

$$
\begin{align*}
& \vec{r}(t)=\vec{r}_{0}+\vec{v}_{0} t+\frac{1}{2} \vec{a} t^{2} \tag{3}\\
&=3 \vec{j}+115\left(\cos 50^{\circ} \vec{i}+\sin 50^{\circ} \vec{j}\right) t+\frac{1}{2}(-32.174 \vec{j}) t^{2} \tag{4}\\
&=\left(115 \cos \left(50^{\circ}\right) t\right) \vec{i}+\left(3+115 \sin \left(50^{\circ}\right) t-\frac{1}{2} 32.174 t^{2}\right) \vec{j} \tag{5}\\
& \quad x(t)=115 \cos \left(50^{\circ}\right) t \tag{6}\\
& \quad y(t)=3+115 \sin \left(50^{\circ}\right) t-16.087 t^{2} \tag{7}
\end{align*}
$$

The question of whether this trajectory clears the fence can be rephrased as the question of whether the ball is above the level $y=10$ of top of the fence when the ball reaches the fence at $x=400$.

Solving the equation $x(t)=400$ yields the time when the ball reaches the fence:

$$
\begin{equation*}
t_{\text {fence }}=400 /\left(115 \cos \left(50^{\circ}\right)\right) \approx 5.4 \tag{8}
\end{equation*}
$$

Plugging this into the equation for the height $y(t)$:

$$
\begin{equation*}
y\left(t_{\text {fence }}\right)=3+115 \sin \left(50^{\circ}\right) t_{\text {fence }}-16.087\left(t_{\text {fence }}\right)^{2} \approx 8.654 \tag{9}
\end{equation*}
$$

Because $8.654<10$, the ball does not clear the fence.

