Section 11.2, Problem 53

Show that the total length of the ellipse $x=a \sin \theta, y=b \cos \theta$ (we assume $a>b>0$) is

$$
\begin{equation*}
L=4 a \int_{0}^{\pi / 2} \sqrt{1-e^{2} \sin ^{2} \theta} d \theta \tag{1}
\end{equation*}
$$

where $e=\frac{1}{a} \sqrt{a^{2}-b^{2}}$ is the eccentricity of the ellipse.
The given parameterization of the ellipse makes one full rotation when θ goes from 0 to 2π. However, by dividing the ellipse into four congruent segments along the major and minor axes of the ellipse, we realize that the total length is equal to 4 times the length as θ goes from 0 to $\pi / 2$. Thus

$$
\begin{equation*}
L=\int_{0}^{2 \pi} \sqrt{\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}} d \theta=4 \int_{0}^{\pi / 2} \sqrt{\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}} d \theta \tag{2}
\end{equation*}
$$

It remains to get the integrand in the desired form. We have

$$
\begin{gather*}
\frac{d x}{d \theta}=a \cos \theta, \quad \frac{d y}{d \theta}=-b \sin \theta \tag{3}\\
\sqrt{\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}}=\sqrt{a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta} \tag{4}
\end{gather*}
$$

Using $\cos ^{2} \theta=1-\sin ^{2} \theta$, we obtain

$$
\begin{gather*}
=\sqrt{a^{2}-a^{2} \sin ^{2} \theta+b^{2} \sin ^{2} \theta}=\sqrt{a^{2}-\left(a^{2}-b^{2}\right) \sin ^{2} \theta} \tag{5}\\
=\sqrt{a^{2}\left[1-\left(\frac{a^{2}-b^{2}}{a^{2}}\right) \sin ^{2} \theta\right]}=a \sqrt{1-e^{2} \sin ^{2} \theta} \tag{6}
\end{gather*}
$$

where we recognize $e^{2}=\frac{a^{2}-b^{2}}{a^{2}}$.
Thus

$$
\begin{equation*}
L=4 \int_{0}^{\pi / 2} a \sqrt{1-e^{2} \sin ^{2} \theta} d \theta \tag{7}
\end{equation*}
$$

and we can pull the constant a out of the integral.

