Section 12.9, Problem 38

(a) Starting with the geometric series

$$
\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}
$$

find the sum of the series

$$
\sum_{n=1}^{\infty} n x^{n-1}
$$

for $|x|<1$.
We simply differentiate the geometric series:

$$
\sum_{n=1}^{\infty} n x^{n-1}=\frac{d}{d x} \sum_{n=0}^{\infty} x^{n}=\frac{d}{d x} \frac{1}{1-x}=\frac{1}{(1-x)^{2}}
$$

Because the geometric series converges for $|x|<1$, this equation is valid for $|x|<1$.
(b) Find the sum of the following series:

$$
\sum_{n=1}^{\infty} n x^{n},|x|<1 \quad \sum_{n=1}^{\infty} \frac{n}{2^{n}}
$$

For the first one, we just multiply the result of part (a) by x :

$$
\sum_{n=1}^{\infty} n x^{n}=x \sum_{n=1}^{\infty} n x^{n-1}=x \cdot \frac{1}{(1-x)^{2}}=\frac{x}{(1-x)^{2}}
$$

The second sum is just the first one with $x=1 / 2$ substituted for x. Note that since $|1 / 2|<1$ the power series expansion is valid at this x-value. Thus

$$
\sum_{n=1}^{\infty} \frac{n}{2^{n}}=\frac{(1 / 2)}{(1-(1 / 2))^{2}}=2
$$

(c) Find the sum of the following series:

$$
\sum_{n=2}^{\infty} n(n-1) x^{n},|x|<1, \quad \sum_{n=2}^{\infty} \frac{n^{2}-n}{2^{n}}, \quad \sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}
$$

For the first sum, differentiate the geometric series twice

$$
\sum_{n=2}^{\infty} n(n-1) x^{n-2}=\frac{d^{2}}{d x^{2}} \sum_{n=0}^{\infty} x^{n}=\frac{d^{2}}{d x^{2}} \frac{1}{1-x}=\frac{2}{(1-x)^{3}}
$$

And multiply by x^{2} :

$$
\sum_{n=2}^{\infty} n(n-1) x^{n}=x^{2} \cdot \sum_{n=2}^{\infty} n(n-1) x^{n-2}=x^{2} \cdot \frac{2}{(1-x)^{3}}=\frac{2 x^{2}}{(1-x)^{3}}
$$

This is valid in the same interval as the geometric series itself: $|x|<1$.
For the second sum, we just substitute $x=1 / 2$:

$$
\sum_{n=2}^{\infty} \frac{n^{2}-n}{2^{n}}=\sum_{n=2}^{\infty} n(n-1)(1 / 2)^{n}=\frac{2(1 / 2)^{2}}{(1-(1 / 2))^{3}}=4
$$

For the third sum, we need to use the previous line plus the fact from part (b) that

$$
2=\sum_{n=1}^{\infty} \frac{n}{2^{n}}
$$

Now

$$
4=\sum_{n=2}^{\infty} \frac{n^{2}-n}{2^{n}}=\sum_{n=1}^{\infty} \frac{n^{2}-n}{2^{n}}=\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}-\sum_{n=1}^{\infty} \frac{n}{2^{n}}
$$

In the first step, we changed the sum from starting at $n=2$ to starting at $n=1$: This is okay because the $n=1$ term is actually zero.

Thus

$$
\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}=6
$$

