Section 12.9, Problem 38

(a) Starting with the geometric series
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for |x| < 1.
We simply differentiate the geometric series:
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Because the geometric series converges for |x| < 1, this equation is valid for
|z < 1.
(b) Find the sum of the following series:
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For the first one, we just multiply the result of part (a) by x:

[e%S) [eS) 1 z
n __ n—1 __ —
;’I’L{L‘ —x;nx —(E'(l_l‘)Q—(l_I)Q

The second sum is just the first one with & = 1/2 substituted for . Note
that since |1/2] < 1 the power series expansion is valid at this z-value. Thus
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(¢) Find the sum of the following series:

Zn(n—l)yc”7 |z] <1, ZT, o0
n=2 n=2 n=1

For the first sum, differentiate the geometric series twice
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And multiply by z2:
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This is valid in the same interval as the geometric series itself: |z| < 1
For the second sum, we just substitute z = 1/2:
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For the third sum, we need to use the previous line plus the fact from part
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In the first step, we changed the sum from starting at n = 2 to starting at n = 1:

This is okay because the n = 1 term is actually zero
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