Section 12.6, Problem 39

Given any series $\sum a_{n}$, we define a series $\sum a_{n}^{+}$consisting of the positive terms of $\sum a_{n}$, and a series $\sum a_{n}^{-}$consisting of the negative terms of $\sum a_{n}$. More specifically, we define

$$
\begin{equation*}
a_{n}^{+}=\frac{a_{n}+\left|a_{n}\right|}{2} \quad a_{n}^{-}=\frac{a_{n}-\left|a_{n}\right|}{2} \tag{1}
\end{equation*}
$$

Thus, if $a_{n}>0$, then $a_{n}^{+}=a_{n}$ and $a_{n}^{-}=0$, while if $a_{n}<0$, then $a_{n}^{+}=0$ and $a_{n}^{-}=a_{n}$.

Part (a): If $\sum a_{n}$ is absolutely convergent, show that both of the series $\sum a_{n}^{+}$ and $\sum a_{n}^{-}$are convergent.

Because $\sum a_{n}$ is absolutely convergent, we know that both $\sum a_{n}$ and $\sum\left|a_{n}\right|$ are convergent. Therefore

$$
\begin{equation*}
\sum a_{n}^{+}=\sum \frac{a_{n}+\left|a_{n}\right|}{2}=\frac{1}{2}\left(\sum a_{n}+\sum\left|a_{n}\right|\right) \tag{2}
\end{equation*}
$$

expresses $\sum a_{n}^{+}$as a sum of two convergent series (divided by 2), and so $\sum a_{n}^{+}$ is convergent.

Similarly, $\sum a_{n}^{-}=\frac{1}{2}\left(\sum a_{n}-\sum\left|a_{n}\right|\right)$ is the difference of two convergent series, so $\sum a_{n}^{-}$is convergent.

Part (b): If $\sum a_{n}$ is conditionally convergent, show that both series $\sum a_{n}^{+}$ and $\sum a_{n}^{-}$are divergent.

For $\sum a_{n}$ to be conditionally convergent means that $\sum a_{n}$ is convergent but $\sum\left|a_{n}\right|$ is divergent.

Suppose that $\sum a_{n}^{+}$were convergent. We can write

$$
\begin{equation*}
\left|a_{n}\right|=2 a_{n}^{+}-a_{n} \tag{3}
\end{equation*}
$$

And so $\sum\left|a_{n}\right|=\sum\left(2 a_{n}^{+}-a_{n}\right)=2 \sum a_{n}^{+}-\sum a_{n}$. This represents $\sum\left|a_{n}\right|$ as the sum of two convergent series, forcing $\sum\left|a_{n}\right|$ to be convergent, and contradicting our assumption.

The other case is similar. Suppose $\sum a_{n}^{-}$were convergent. Then using

$$
\begin{equation*}
\left|a_{n}\right|=a_{n}-2 a_{n}^{-} \tag{4}
\end{equation*}
$$

we obtain that $\sum\left|a_{n}\right|=\sum a_{n}-2 \sum a_{n}^{-}$is the difference of two convergent series, hence convergent, contradicting our assumption.

