Section 16.4, Problem 36

Part (a): If D_{a} is the disk of radius a centered at the origin

$$
\begin{equation*}
\iint_{D_{a}} e^{-\left(x^{2}+y^{2}\right)} d A=\int_{0}^{2 \pi} \int_{0}^{a} e^{-r^{2}} r d r d \theta \tag{1}
\end{equation*}
$$

where we have written the integral in polar coordinates using $x^{2}+y^{2}=r^{2}$ and $d A=r d r d \theta$. This integral is straightforward to evaluate. Making the substitution $u=-r^{2}$, $d u=-2 r d r$, we have obtain
$\int_{0}^{2 \pi} \int_{0}^{-a^{2}} e^{u} \frac{d u}{-2} d \theta=\int_{0}^{2 \pi} \frac{1}{-2}\left[e^{u}\right]_{0}^{-a^{2}} d \theta=\int_{0}^{2 \pi} \frac{1}{-2}\left(e^{-a^{2}}-1\right) d \theta=2 \pi \frac{1}{-2}\left(e^{-a^{2}}-1\right)=\pi\left(1-e^{-a^{2}}\right)$
Thus $\iint_{D_{a}} e^{-\left(x^{2}+y^{2}\right)} d A=\pi\left(1-e^{-a^{2}}\right)$. To obtain the improper integral over the entire plane, we take the limit as $a \rightarrow \infty$.

$$
\begin{equation*}
I=\iint_{\mathbf{R}^{2}} e^{-\left(x^{2}+y^{2}\right)} d A=\lim _{a \rightarrow \infty} \iint_{D_{a}} e^{-\left(x^{2}+y^{2}\right)} d A=\lim _{a \rightarrow \infty} \pi\left(1-e^{-a^{2}}\right)=\pi \tag{3}
\end{equation*}
$$

Part (b): The equivalent definition of the improper integral is as the limit as $a \rightarrow \infty$ of integrals over squares $S_{a}=\{(x, y) \mid-a \leq x \leq a,-a \leq y \leq a\}$. Clearly,

$$
\begin{equation*}
\iint_{S_{a}} e^{-\left(x^{2}+y^{2}\right)} d A=\int_{-a}^{a} \int_{-a}^{a} e^{-\left(x^{2}+y^{2}\right)} d x d y=\int_{-a}^{a} \int_{-a}^{a} e^{-x^{2}} e^{-y^{2}} d x d y \tag{4}
\end{equation*}
$$

Since $e^{-y^{2}}$ is constant with respect to x, we can pull it out of the inner integral:

$$
\begin{equation*}
\int_{-a}^{a}\left[\int_{-a}^{a} e^{-x^{2}} d x\right] e^{-y^{2}} d y \tag{5}
\end{equation*}
$$

Since the expression in square brackets is constant with respect to y, we can pull it out of the $d y$-integral:

$$
\begin{equation*}
\int_{-a}^{a} e^{-x^{2}} d x \int_{-a}^{a} e^{-y^{2}} d y \tag{6}
\end{equation*}
$$

Thus

$$
\begin{equation*}
I=\lim _{a \rightarrow \infty} \iint_{S_{a}} e^{-\left(x^{2}+y^{2}\right)} d A=\lim _{a \rightarrow \infty} \int_{-a}^{a} e^{-x^{2}} d x \int_{-a}^{a} e^{-y^{2}} d y=\int_{-\infty}^{\infty} e^{-x^{2}} d x \int_{-\infty}^{\infty} e^{-y^{2}} d y \tag{7}
\end{equation*}
$$

Since in part (a) we found $I=\pi$, we get

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-x^{2}} d x \int_{-\infty}^{\infty} e^{-y^{2}} d y=\pi \tag{8}
\end{equation*}
$$

Part (c): Now we observe that both integrals in the equation above are actually equal: $\int_{-\infty}^{\infty} e^{-x^{2}} d x=$ $\int_{-\infty}^{\infty} e^{-y^{2}} d y$, since x and y are just dummy variables. Thus

$$
\begin{equation*}
\left(\int_{-\infty}^{\infty} e^{-x^{2}} d x\right)^{2}=\pi \tag{9}
\end{equation*}
$$

Hence the integral in question is $\pm \sqrt{\pi}$. It's clear that $\int_{-\infty}^{\infty} e^{-x^{2}} d x$ is positive, since it is the integral of a positive function. Thus it equals $\sqrt{\pi}$:

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi} \tag{10}
\end{equation*}
$$

Part (d): Let $t=\sqrt{2} x$. Then $x^{2}=t^{2} / 2$, and $d t=\sqrt{2} d x$, and when we substitute:

$$
\begin{equation*}
\sqrt{\pi}=\int_{-\infty}^{\infty} e^{-x^{2}} d x=\int_{-\infty}^{\infty} e^{-t^{2} / 2} \frac{d t}{\sqrt{2}}=\frac{1}{\sqrt{2}} \int_{-\infty}^{\infty} e^{-t^{2} / 2} d t \tag{11}
\end{equation*}
$$

Moving the factor of $\sqrt{2}$ over to the other side and changing the dummy variable from t back to x gives

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-x^{2} / 2} d x=\sqrt{2 \pi} \tag{12}
\end{equation*}
$$

Note: The function $f(x)=\left(e^{-x^{2} / 2}\right) / \sqrt{2 \pi}$ is called the Gaussian or normal distribution, which is important in probability theory. This function has $\int_{-\infty}^{\infty} f(x) d x=1$, which is required for any probability distribution. This requirement explains the importance of the factor $\sqrt{2 \pi}$.

