Section 16.4, Problem 36

Part (a): If D_a is the disk of radius a centered at the origin

$$\iint_{D_a} e^{-(x^2 + y^2)} dA = \int_0^{2\pi} \int_0^a e^{-r^2} r \, dr \, d\theta \tag{1}$$

where we have written the integral in polar coordinates using $x^2 + y^2 = r^2$ and $dA = r dr d\theta$. This integral is straightforward to evaluate. Making the substitution $u = -r^2$, du = -2r dr, we have obtain

$$\int_{0}^{2\pi} \int_{0}^{-a^{2}} e^{u} \frac{du}{-2} d\theta = \int_{0}^{2\pi} \frac{1}{-2} \left[e^{u} \right]_{0}^{-a^{2}} d\theta = \int_{0}^{2\pi} \frac{1}{-2} (e^{-a^{2}} - 1) d\theta = 2\pi \frac{1}{-2} (e^{-a^{2}} - 1) = \pi (1 - e^{-a^{2}})$$
(2)

Thus $\iint_{D_a} e^{-(x^2+y^2)} dA = \pi(1-e^{-a^2})$. To obtain the improper integral over the entire plane, we take the limit as $a \to \infty$.

$$I = \iint_{\mathbf{R}^2} e^{-(x^2 + y^2)} dA = \lim_{a \to \infty} \iint_{D_a} e^{-(x^2 + y^2)} dA = \lim_{a \to \infty} \pi (1 - e^{-a^2}) = \pi$$
(3)

Part (b): The equivalent definition of the improper integral is as the limit as $a \to \infty$ of integrals over squares $S_a = \{(x, y) \mid -a \le x \le a, -a \le y \le a\}$. Clearly,

$$\iint_{S_a} e^{-(x^2+y^2)} dA = \int_{-a}^a \int_{-a}^a e^{-(x^2+y^2)} dx \, dy = \int_{-a}^a \int_{-a}^a e^{-x^2} e^{-y^2} \, dx \, dy \tag{4}$$

Since e^{-y^2} is constant with respect to x, we can pull it out of the inner integral:

$$\int_{-a}^{a} \left[\int_{-a}^{a} e^{-x^{2}} dx \right] e^{-y^{2}} dy$$
 (5)

Since the expression in square brackets is constant with respect to y, we can pull it out of the dy-integral:

$$\int_{-a}^{a} e^{-x^{2}} dx \int_{-a}^{a} e^{-y^{2}} dy$$
(6)

Thus

$$I = \lim_{a \to \infty} \iint_{S_a} e^{-(x^2 + y^2)} dA = \lim_{a \to \infty} \int_{-a}^{a} e^{-x^2} dx \int_{-a}^{a} e^{-y^2} dy = \int_{-\infty}^{\infty} e^{-x^2} dx \int_{-\infty}^{\infty} e^{-y^2} dy$$
(7)

Since in part (a) we found $I = \pi$, we get

$$\int_{-\infty}^{\infty} e^{-x^2} dx \int_{-\infty}^{\infty} e^{-y^2} dy = \pi$$
(8)

Part (c): Now we observe that both integrals in the equation above are actually equal: $\int_{-\infty}^{\infty} e^{-x^2} dx = \int_{-\infty}^{\infty} e^{-y^2} dy$, since x and y are just dummy variables. Thus

$$\left(\int_{-\infty}^{\infty} e^{-x^2} \, dx\right)^2 = \pi \tag{9}$$

Hence the integral in question is $\pm \sqrt{\pi}$. It's clear that $\int_{-\infty}^{\infty} e^{-x^2} dx$ is positive, since it is the integral of a positive function. Thus it equals $\sqrt{\pi}$:

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi} \tag{10}$$

Part (d): Let $t = \sqrt{2}x$. Then $x^2 = t^2/2$, and $dt = \sqrt{2}dx$, and when we substitute:

$$\sqrt{\pi} = \int_{-\infty}^{\infty} e^{-x^2} dx = \int_{-\infty}^{\infty} e^{-t^2/2} \frac{dt}{\sqrt{2}} = \frac{1}{\sqrt{2}} \int_{-\infty}^{\infty} e^{-t^2/2} dt$$
(11)

Moving the factor of $\sqrt{2}$ over to the other side and changing the dummy variable from t back to x gives

$$\int_{-\infty}^{\infty} e^{-x^2/2} \, dx = \sqrt{2\pi} \tag{12}$$

Note: The function $f(x) = (e^{-x^2/2})/\sqrt{2\pi}$ is called the Gaussian or normal distribution, which is important in probability theory. This function has $\int_{-\infty}^{\infty} f(x) dx = 1$, which is required for any probability distribution. This requirement explains the importance of the factor $\sqrt{2\pi}$.