
Section 16.4, Problem 36

Part (a): If Da is the disk of radius a centered at the origin∫∫
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where we have written the integral in polar coordinates using x2 + y2 = r2 and dA = r dr dθ. This
integral is straightforward to evaluate. Making the substitution u = −r2, du = −2r dr, we have
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Thus
∫∫
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e−(x
2+y2) dA = π(1 − e−a2). To obtain the improper integral over the entire plane, we

take the limit as a→∞.
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Part (b): The equivalent definition of the improper integral is as the limit as a→∞ of integrals
over squares Sa = {(x, y) | −a ≤ x ≤ a,−a ≤ y ≤ a}. Clearly,∫∫
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Since e−y
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is constant with respect to x, we can pull it out of the inner integral:∫ a
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Since the expression in square brackets is constant with respect to y, we can pull it out of the
dy-integral: ∫ a
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Thus
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Since in part (a) we found I = π, we get∫ ∞
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Part (c): Now we observe that both integrals in the equation above are actually equal:
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Hence the integral in question is ±
√
π. It’s clear that
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of a positive function. Thus it equals
√
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Part (d): Let t =
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2x. Then x2 = t2/2, and dt =
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Moving the factor of
√

2 over to the other side and changing the dummy variable from t back to x
gives ∫ ∞
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Note: The function f(x) = (e−x
2/2)/

√
2π is called the Gaussian or normal distribution, which

is important in probability theory. This function has
∫∞
−∞ f(x) dx = 1, which is required for any

probability distribution. This requirement explains the importance of the factor
√

2π.
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