## Section 16.1, Problems 17

If $f$ is a constant function, $f(x, y)=k$, and $R=[a, b] \times[c, d]$, show that $\iint_{R} f(x, y) d A=k(b-$ a) $(d-c)$.

One simple way to do this is to use the fact that the double integral $\iint_{R} f(x, y) d A$ is the volume under the graph of $f$. Since $f$ is constant, the 3 -dimensional shape under the graph of $f$ is a rectangular prism, with height $k$, width, $(b-a)$, and length $(d-c)$. Hence its volume is $k(b-a)(d-c)$.

Another way to argue uses the Riemann sum definition of integral. We divide the rectangle $R$ into smaller rectangles of width $\Delta x=(b-a) / m$ and length $\Delta y=(d-c) / n$. Thus there are $m n$ total small rectangles. The Riemann sum is

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i}^{*}, y_{j}^{*}\right) \Delta x \Delta y
$$

Since $f$ is constant, $f\left(x_{i}^{*}, y_{j}^{*}\right)=k$ no matter what the sample point $\left(x_{i}^{*}, y_{j}^{*}\right)$ is, so this Riemann sum reduces to

$$
\begin{aligned}
\sum_{i=1}^{m} \sum_{j=1}^{n} k \Delta x \Delta y & =k \sum_{i=1}^{m} \sum_{j=1}^{n} \Delta x \Delta y=k(m n) \Delta x \Delta y \\
& =k(m n) \frac{b-a}{m} \frac{d-c}{n}=k(b-a)(d-c)
\end{aligned}
$$

Since this sum is independent of $m$ and $n$, taking the limit as $m \rightarrow \infty$ and $n \rightarrow \infty$ does nothing, and we have that $\iint_{R} f(x, y) d A=k(b-a)(d-c)$.

