Section 15.4, Problem 42

Suppose you need to know an equation of the tangent plane to a surface S at the point $P(2,1,3)$. You don't have an equation for S but you know that the curves

$$
\begin{align*}
\vec{r}_{1}(t) & =\left\langle 2+3 t, 1-t^{2}, 3-4 t+t^{2}\right\rangle \tag{1}\\
\vec{r}_{2}(u) & =\left\langle 1+u^{2}, 2 u^{3}-1,2 u+1\right\rangle \tag{2}
\end{align*}
$$

both lie on S. Find an equation for the tangent plane at P.
Because we know two curves contained in the surface, we know at least two vectors tangent to the surface S, namely the velocity vectors $\vec{v}_{1}(t)=\frac{d}{d t} \vec{r}_{1}(t)$ and $\vec{v}_{2}(u)=\frac{d}{d t} \vec{r}_{2}(u)$ of these two curves.

$$
\begin{align*}
\vec{v}_{1}(t) & =\langle 3,-2 t,-4+2 t\rangle \tag{3}\\
\vec{v}_{2}(u) & =\left\langle 2 u, 6 u^{2}, 2\right\rangle \tag{4}
\end{align*}
$$

Since we are interested the point $P(2,1,3)$, we need to find the value of the parameter t when $\vec{r}(t)$ passes through P. Clearly $t=0$ works. Similarly, the path $\vec{r}_{2}(u)$ passes through P when $u=1$. Thus,

$$
\begin{align*}
& \vec{v}_{1}(0)=\langle 3,0,-4\rangle \tag{5}\\
& \vec{v}_{2}(1)=\langle 2,6,2\rangle \tag{6}
\end{align*}
$$

are vectors tangent to S at the point $P(2,1,3)$.
We are asked for the equation of the tangent plane, which now means a plane containing the two vectors $\langle 3,0,-4\rangle$ and $\langle 2,6,2\rangle$. For the normal vector to this plane we may take the cross-product of these two vectors.

$$
\begin{equation*}
\langle 3,0,-4\rangle \times\langle 2,6,2\rangle=\langle 24,-14,18\rangle \tag{7}
\end{equation*}
$$

Now we have the normal vector $\langle 24,-14,18\rangle$ to the plane and the point $P(2,1,3)$ on the plane, so an equation for the plane is

$$
\begin{equation*}
24(x-2)-14(y-1)+18(z-3)=0 \tag{8}
\end{equation*}
$$

A simpler form of the same equation is

$$
\begin{equation*}
12 x-7 y+9 z=44 \tag{9}
\end{equation*}
$$

