Section 12.1, problem 68

For clarity, this solution is somewhat wordier than we expect the students to turn in.

The sequence $\left\{a_{n}\right\}$ is defined by $a_{1}=\sqrt{2}$, and $a_{n+1}=\sqrt{2+a_{n}}$.

1. Prove $a_{n}<2$. We proceed by induction. The base case is

$$
a_{1}=\sqrt{2}=1.414 \ldots<2
$$

which is true. Suppose that $a_{n}<2$. Then we have

$$
\begin{gathered}
2+a_{n}<4 \\
\sqrt{2+a_{n}}<\sqrt{4}=2
\end{gathered}
$$

Since the left-hand side of this inequality is the formula for a_{n+1}, we have $a_{n+1}<2$, and the induction step is complete.
2. Prove $\left\{a_{n}\right\}$ is increasing, which is to say $a_{n+1} \geq a_{n}$. To see this, first observe that the inequality

$$
\sqrt{2+x} \geq x
$$

is valid in for x in the interval $-2 \leq x \leq 2$. This can be seen, for example, by drawing the graphs of both sides of the inequality. Because a_{n} is always positive, and, by step 1 , less than 2 , we know a_{n} always lies in this interval of validity, and

$$
a_{n+1}=\sqrt{2+a_{n}} \geq a_{n}
$$

Steps 1 and 2 show that $\left\{a_{n}\right\}$ is increasing and bounded above, so the monotonic sequence theorem applies, and

$$
\lim _{n \rightarrow \infty} a_{n}=L
$$

exists as a finite number.
To find the limit, we take the limit of both sides of the equation $a_{n+1}=$ $\sqrt{2+a_{n}}$:

$$
\begin{gathered}
\lim _{n \rightarrow \infty} a_{n+1}=\lim _{n \rightarrow \infty} \sqrt{2+a_{n}}=\sqrt{2+\lim _{n \rightarrow \infty} a_{n}} \\
L=\sqrt{2+L} \\
L=2
\end{gathered}
$$

