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M408D Exam 3 Version B November 18, 2011 James Pascaleff
Problem | Possible | Actual
1 15
INSTRUCTIONS: 2 20
e Answer problems 1-6 for regular credit. 3 20
e Problem 7 is extra credit. 4 15
e Do all work on these sheets;
o 5) 15
use reverse side if necessary.
e Show all work. 6 15
e No books, notes, calculators, 7 (EC) | 10 (EC)
or other electronic devices.
Total 100




1. (15 points) Consider the quadric surface defined by the equation

1;2 y2 9
T 472
197

(a) (4 points) Describe the intersection of this quadric surface with a plane defined by an
equation x = a, where a is a constant.
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(b) (4 points) Describe the intersection of this quadric surface with a plane defined by an
equation y = b, where b is a constant. How does the shape depend on b?
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(¢) (4 points) Describe the intersection of this quadric surface with a plane defined by an
equation z = ¢, where c is a constant.
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(d) (3 points) Classify the quadric surface. Use a term like “ellipsoid” or “elliptic paraboloid,”
or similar. Note: the right answer is neither “ellipsoid” nor “elliptic paraboloid.”
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2. (20 points) Consider the curve given by
F(t) = %1 + cos(nt)j + t3k

(a) (10 points) Find the tangent line to this curve at the point (1,—1,1). You can write the
tangent line in any form you wish.
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(b) (5 points) What is the speed of this curve as a function of ¢?
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(c) (5 points) Set up, but do not evaluate, an integral that represents the arclength of this
curve between t = 0 and t = 1.
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3. (20 points) Consider the function
f(@,y) = tan™!(z + 8y)

(a) (5 points) Find the gradient of f at the point (25, —3)
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(b) (5 points) Find an equation for the tangent plane to the surface z = f(x,y) at the point
(25, —3, 7 /4).
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(c) (5 points) Using linear approximation near the point (25, —3), find an approximation for
£(25,-3.1).
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(d) (5 points) In what direction at the point (25, —3) does the function f(x,y) decrease the
fastest?
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4. (15 points) Find and classify the critical points of the function
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5. (15 points) Use the method of Lagrange multipliers to find the point where the minimum
value of the function
flz,y,2) =22° +y* +22° +4

subject to the constraint
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6. (15 points) Let 7(t) = (x(t),y(t), 2(t)) be a curve in 3-dimensional space. Let ¥(t) = % and

a(t) = % denote the velocity and acceleration. Let V(x,y, z) be a function of 3 variables.

Suppose that the equation
a(t) = =VV(r(t))
holds for all £. Prove that )
dt |2
Physics explanation (not needed to solve the problem): If 7(t) represents the motion of a
particle with mass m = 1, and V(x,y, z) is the potential energy function, then the expression
FT(t) > + V(#(t)) is the total energy of the particle, and d(t) = —VV (7(t)) is the equation of
motion (Newton’s second law). So you are proving the law of conservation of energy.
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7. (10 points Extra Credit) Does this function have a limit at (0,0)? Prove your answer.
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