NAME: SOLUTIONS

EID:

CIRCLE YOUR UNIQUE NUMBER:

54550 (8:30-9:30) 54555 (4:00-5:00) 54560 (5:00-6:00)

M408D Exam 3 Version A	November 1	ovember 18, 2011		James Pascaleff		
		Problem	Possible	Actual		
[1	15			
INSTRUCTIONS:		2	20			
• Answer problems 1–6 for regular cree	lit.	3	20			
• Problem 7 is extra credit.		4	15			
• Do all work on these sheets; use reverse side if necessary.		5	15			
• Show all work.		6	15			
• No books, notes, calculators, or other electronic devices.		7 (EC)	10 (EC)			
		Total	100			

1

1. (15 points) Consider the quadric surface defined by the equation

$$\frac{x^2}{4} - \frac{y^2}{9} - z^2 = 1$$

(a) (4 points) Describe the intersection of this quadric surface with a plane defined by an equation x = a, where a is a constant. How does the shape depend on a?

$$\frac{a^{2}}{4} - \frac{y^{2}}{4} - \frac{z^{2}}{2} = 1 \iff \frac{y^{2}}{4} + \frac{z^{2}}{2} = \frac{a^{2}}{4} - 1$$

if $|a| > 2$, ellipse; if $|a| = 2$, point;
if $|a| < 2$, empty.

(b) (4 points) Describe the intersection of this quadric surface with a plane defined by an equation y = b, where b is a constant.

$$\frac{x^2}{4} - \frac{b^2}{9} - z^2 = | \leq \frac{x^2}{4} - z^2 = | + \frac{b^2}{9}$$

hyperbola

(c) (4 points) Describe the intersection of this quadric surface with a plane defined by an equation z = c, where c is a constant.

$$\frac{x^{2}}{4} - \frac{y^{2}}{9} - \frac{z^{2}}{2} = 1 \iff \frac{x^{2}}{4} - \frac{y^{2}}{9} = 1 + c^{2}$$
hyperbola

(d) (3 points) Classify the quadric surface. Use a term like "ellipsoid" or "elliptic paraboloid," or similar. *Note:* the right answer is neither "ellipsoid" nor "elliptic paraboloid."

2. (20 points) Consider the curve given by

$$\vec{r}(t) = t^2 \vec{i} + t^4 \vec{j} + \cos(\pi t) \vec{k}$$

(a) (10 points) Find the tangent line to this curve at the point (1, 1, −1). You can write the tangent line in any form you wish.

$$t=1, F(1) = \langle 1, 1, -1 \rangle$$

$$\vec{r}'(t) = \langle 1+, 4t^{3}, -\pi \sin(\pi t) \rangle \quad ab \quad t=1, \vec{r}'(1) = \langle 2, 4, 0 \rangle$$

$$tanyond line: \begin{cases} \chi(t) = 1+2t \\ \chi(t) = 1+4t \\ \chi(t) = -1 \end{cases}$$

(b) (5 points) What is the speed of this curve as a function of t?

$$speed = \left| \vec{r}'(t) \right| = \sqrt{(2t)^2 + (4t^3)^2} + (-\pi \sin(\pi t))^2$$
$$= \sqrt{4t^2 + 16t^6 + \pi^2 \sin^2(\pi t)}$$

(c) (5 points) Set up, but do not evaluate, an integral that represents the arclength of this curve between t = 0 and t = 1.

Arelength =
$$\int speed dt$$

= $\int \sqrt{4t^2 + 16t^6 + \pi^2 sih^2(\pi t)} dt$

3. (20 points) Consider the function

$$f(x,y) = \tan^{-1}(4x+y)$$

(a) (5 points) Find the gradient of f at the point (4, -15)

$$\frac{\partial f}{\partial x} = \frac{1}{1 + (4x + y)^2} (4) = \frac{1}{1 + (4 + 4 - 15)^2} 4 = \frac{1}{2} 4 = 2$$

$$\frac{\partial f}{\partial y} = \frac{1}{1 + (4x + y)^2} (1) = \frac{1}{2} \quad \nabla f = \langle 2, \frac{1}{2} \rangle$$

(b) (5 points) Find an equation for the tangent plane to the surface z = f(x, y) at the point $(4, -15, \pi/4)$.

$$\mathcal{Z} - \frac{\pi}{4} = \frac{2}{5x} (x - 4) + \frac{2}{5y} (y + 15)$$
$$\frac{\pi}{2} - \frac{\pi}{4} = \frac{1}{2} (x - 4) + \frac{1}{2} (y + 15)$$

(c) (5 points) Using linear approximation near the point (4, -15), find an approximation for f(4.1, -15).

$$f(4,1,-15) \approx \frac{\pi}{4} + 2(4,1-4) + \frac{1}{2}(-15+15)$$
$$= \frac{\pi}{4} + 2(9,1) = \frac{\pi}{4} + 0.2$$

(d) (5 points) In what direction at the point (4, -15) does the function f(x, y) decrease the fastest?

Ale direction opposible to the gredient,
shut is, the direction of
$$-\nabla f$$

= direction of $(-2, -\frac{1}{2})$

4. (15 points) Find and classify the critical points of the function

$$f(x,y) = 2 + 4x + 2y - 3x^{2} - y^{2}$$

$$\frac{\partial f}{\partial x} = 4 - 6x = 0 \implies x = \frac{2}{3}$$

$$\frac{\partial f}{\partial y} = 2 - 2y = 0 \implies y = 1$$

$$80 \quad (\frac{1}{3}, 1) \quad is \text{ fle only critical point.}$$

$$\frac{\partial^{2} f}{\partial x^{2}} = -2 \qquad \frac{\partial^{2} f}{\partial x \partial y} = 0$$

$$D = (-6)(-2) - (0)^{2} = 12 > 0$$

$$\implies (ecal max ar min)$$

$$\frac{\partial^2 f}{\partial x^2} - 6 < 0 \Rightarrow \text{local max}$$

 $\left(\frac{2}{3}, 1\right)$ is a local max

5. (15 points) Use the method of Lagrange multipliers to find the point where the minimum value of the function

$$f(x, y, z) = 2x^2 + y^2 + 2z^2 + 3$$

subject to the constraint

occurs.

$$g(x,y,z) = 2x + 3y + 2z = 5$$

$$\begin{aligned} \nabla f &= \left\langle 4x, 2y, 4z \right\rangle \\ \nabla g &= \left\langle 2, 3, 2 \right\rangle \\ \nabla f &= \lambda \nabla g \Rightarrow \begin{cases} 4x &= 2\lambda \\ 2y &= 3\lambda \end{cases} \Rightarrow \begin{cases} x &= \frac{1}{2}\lambda \\ 2y &= 3\lambda \end{cases} \Rightarrow \begin{cases} y &= \frac{1}{2}\lambda \\ y &= \frac{1}{2}\lambda \end{cases} \\ y &= \frac{1}{2}\lambda \end{cases} \end{aligned}$$

6. (15 points) Let $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$ be a curve in 3-dimensional space. Let $\vec{v}(t) = \frac{d\vec{r}}{dt}$ and $\vec{a}(t) = \frac{d^2\vec{r}}{dt^2}$ denote the velocity and acceleration. Let V(x, y, z) be a function of 3 variables. **Suppose** that the equation $\vec{\tau}(t) = \nabla V(\vec{\tau}(t))$

$$\vec{a}(t) = -\nabla V(\vec{r}(t))$$
$$\frac{d}{dt} \left[\frac{1}{2} |\vec{v}(t)|^2 + V(\vec{r}(t)) \right] = 0$$

holds for all t. **Prove** that

Physics explanation (not needed to solve the problem): If $\vec{r}(t)$ represents the motion of a particle with mass m = 1, and V(x, y, z) is the potential energy function, then the expression $\frac{1}{2}|\vec{v}(t)|^2 + V(\vec{r}(t))$ is the total energy of the particle, and $\vec{a}(t) = -\nabla V(\vec{r}(t))$ is the equation of motion (Newton's second law). So you are proving the law of conservation of energy.

$$\frac{1}{2} |\vec{v}(t)|^{2} = \frac{1}{2} \left(\sqrt{x'(t)^{2} + y'(t)^{2} + \frac{1}{2}'(t)^{2}} \right)^{2}$$

$$= \frac{1}{2} \left(x'(t)^{2} + y'(t)^{2} + \frac{1}{2}'(t)^{2} \right)$$

$$\frac{d}{dt} \left(\frac{1}{2} |\vec{v}(t)|^{2} \right) = x'(t) x''(t) + y'(t) y''(t) + \frac{1}{2}'(t) \frac{1}{2}''(t)$$

$$= \vec{v}(t) \cdot \vec{a}(t)$$

$$\frac{d}{dT} \left(V(\vec{r}(t)) = \frac{d}{dT} \left[V(x(t), y(t), \vec{r}(t)) \right]$$

$$= \frac{\partial V}{\partial x} x'(t) + \frac{\partial V}{\partial y} y'(t) + \frac{\partial V}{\partial z} \vec{r}(t)$$

$$= \nabla V(\vec{r}(t)) \cdot \vec{V}(t) = -\vec{a}(t) \cdot \vec{V}(t) \text{ assurptive}^{1}$$

$$\frac{d}{dt} \left[\frac{1}{2} |\vec{v}(t)|^2 + V(\vec{r}(t)) \right] = \vec{V}(t) \cdot \vec{a}(t) - \vec{a}(t) \cdot \vec{v}(t) = 0$$

7. (10 points Extra Credit) Does this function have a limit at (0,0)? Prove your answer.

$$f(x,y) = \frac{xy}{x^2+y^2}$$

Limit does not exist:
consider x=t, y=0 t=0
lim $f(t,0) = \frac{x0}{x^2+0^2} = 0$
consider x=t, y=t t=0
lim $f(t,t) = \frac{t^2}{t^2+t^2} = \frac{1}{2}$
Since $\frac{1}{2} \neq 0$, the limits from two different
directries do not agre, and
lim $f(x,y)$ Does not exist.