NAME: $S G L G T O N S$
 EID:

CIRCLE YOUR UNIQUE NUMBER:

54550 (8:30-9:30) 54555 (4:00-5:00) $54560(5: 00-6: 00)$

M408D Exam 3 Version A November 18, 2011 James Pascaleff

INSTRUCTIONS:

- Answer problems 1-6 for regular credit.
- Problem 7 is extra credit.
- Do all work on these sheets; use reverse side if necessary.
- Show all work.
- No books, notes, calculators, or other electronic devices.

Problem	Possible	Actual
1	15	
2	20	
3	20	
4	15	
5	15	
6	15	
$7(\mathrm{EC})$	$10(\mathrm{EC})$	
Total	100	

1. (15 points) Consider the quadric surface defined by the equation

$$
\frac{x^{2}}{4}-\frac{y^{2}}{9}-z^{2}=1
$$

(a) (4 points) Describe the intersection of this quadric surface with a plane defined by an equation $x=a$, where a is a constant. How does the shape depend on a ?

$$
\begin{aligned}
& \frac{a^{2}}{4}-\frac{y^{2}}{4}-z^{2}=1 \Leftrightarrow \frac{y^{2}}{4}+z^{2}=\frac{a^{2}}{4}-1 \\
& \text { |t }|a|>2 \text {, ellipse; } \mid \text { if }|a|=2 \text {, point; } \\
& \text { of }|a|<2 \text {, empty. }
\end{aligned}
$$

(b) (4 points) Describe the intersection of this quadric surface with a plane defined by an

$$
\begin{aligned}
\frac{x^{2}}{4}-\frac{b^{2}}{9}-z^{2}=1 \Leftrightarrow & \frac{x^{2}}{4}-z^{2}=1+\frac{b^{2}}{9} \\
& \text { hyperbola }
\end{aligned}
$$

(c) (4 points) Describe the intersection of this quadric surface with a plane defined by an equation $z=c$, where c is a constant.

$$
\begin{aligned}
\frac{x^{2}}{4}-\frac{y^{2}}{9}-c^{2}=1 \Leftrightarrow & \frac{x^{2}}{4}-\frac{y^{2}}{9}=1+c^{2} \\
& \text { hyperbola }
\end{aligned}
$$

(d) (3 points) Classify the quadric surface. Use a term like "ellipsoid" or "elliptic paraboloid," or similar. Note: the right answer is neither "ellipsoid" nor "elliptic paraboloid."
hypertrolvid of two sheets
2. (20 points) Consider the curve given by

$$
\vec{r}(t)=t^{2} \vec{i}+t^{4} \vec{j}+\cos (\pi t) \vec{k}
$$

(a) (10 points) Find the tangent line to this curve at the point ($1,1,-1$). You can write the tangent line in any form you wish.

$$
\begin{aligned}
& t=1=, \vec{r}(1)=\langle 1,1,-1\rangle \\
& \vec{r}(t)=\left\langle 2 t, 4 t^{3},-\pi \sin (\pi t)\right\rangle \text { at } t=1, \vec{r}(1)=\langle 2,4,0\rangle \\
& \text { tangent } \ln : \quad\left\{\begin{array}{l}
x(t)=1+2 t \\
y(t)=1+4 t \\
z(t)=-1
\end{array}\right.
\end{aligned}
$$

(b) (5 points) What is the speed of this curve as a function of t ?

$$
\begin{aligned}
\end{aligned}
$$

(c) (5 points) Set up, but do not evaluate, an integral that represents the arclength of this curve between $t=0$ and $t=1$.

3. (20 points) Consider the function

$$
f(x, y)=\tan ^{-1}(4 x+y)
$$

(a) (5 points) Find the gradient of f at the point $(4,-15)$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\frac{1}{1+(4 x+y)^{2}}(4)=\frac{1}{1+(4 \cdot 4-15)^{2}} 4=\frac{1}{2} 4=2 \\
& \frac{\partial f}{\partial y}=\frac{1}{1+(4 x+y)^{2}}(1)=\frac{1}{2} \quad \nabla f=\left\langle 2, \frac{1}{2}\right\rangle
\end{aligned}
$$

(b) (5 points) Find an equation for the tangent plane to the surface $z=f(x, y)$ at the point $(4,-15, \pi / 4)$.

$$
\begin{aligned}
& z-\frac{\pi}{4}=\frac{\partial f}{\partial x}(x-4)+\frac{\partial f}{\partial y}(y+15) \\
& z-\frac{\pi}{4}=2(x-4)+\frac{1}{2}(y+15)
\end{aligned}
$$

(c) (5 points) Using linear approximation near the point (4, -15), find an approximation for $f(4.1,-15)$.

$$
\begin{aligned}
f(4.1 .15) & \approx \frac{\pi}{4}+2(4.1-4)+\frac{1}{2}(-15+15) \\
& =\frac{\pi}{4}+2(0.1)=\frac{\pi}{4}+0.2
\end{aligned}
$$

(d) (5 points) In what direction at the point $(4,-15)$ does the function $f(x, y)$ decrease the fastest?
the direction opposite to the gradient,
that is, the direetui of $-\nabla f$

$$
=\operatorname{divecti} \text { of }\left\langle-2,-\frac{1}{2}\right\rangle
$$

4. (15 points) Find and classify the critical points of the function

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=4-6 x=0 \Rightarrow x=\frac{2}{3} \\
& \frac{\partial f}{\partial y}=2-2 y=0 \Rightarrow y=1
\end{aligned}
$$

so $\left(\frac{2}{3}, 1\right)$ is the only critical point.

$$
\begin{aligned}
& \frac{\partial^{2} f}{\partial x^{2}}=-6, \frac{\partial^{2} f}{\partial y^{2}}=-2 \quad \frac{\partial^{2} f}{\partial x \partial y}=0 \\
& D=(-6)(-2)-(0)^{2}=12>0
\end{aligned}
$$

\Rightarrow local max or min
$\frac{\partial^{2} f}{\partial x^{2}}-6<0 \Rightarrow$ local max
$\left(\frac{2}{3}, 1\right)$ is a leal max
5. (15 points) Use the method of Lagrange multipliers to find the point where the minimum value of the function

$$
f(x, y, z)=2 x^{2}+y^{2}+2 z^{2}+3
$$

subject to the constraint
occurs.

$$
g(x, y, z)=2 x+3 y+2 z=5
$$

$$
\begin{aligned}
& \nabla f=\langle 4 x, 2 y, 4 z\rangle \\
& \nabla g=\langle 2,3,2\rangle \\
& \nabla f=\lambda \nabla g \Rightarrow\left\{\begin{array}{l}
4 x=2 \lambda \\
2 y=3 \lambda \\
4 z=2 \lambda
\end{array} \Rightarrow \begin{array}{l}
x=\frac{1}{2} \lambda \\
y=\frac{3}{2} \lambda \\
z=\frac{1}{2} \lambda
\end{array}\right.
\end{aligned}
$$

$$
\text { using } \begin{array}{ll}
& 2 x+3 y+2 z=5 \\
& 2\left(\frac{1}{2} \lambda\right)+3\left(\frac{3}{2} \lambda\right)+2\left(\frac{1}{2} \lambda\right)=5 \\
\Rightarrow & \lambda+\frac{9}{2} \lambda+\lambda=5 \\
\Rightarrow & \frac{13}{2} \lambda=5 \Rightarrow \lambda=\frac{10}{13} \\
\Rightarrow & x=\frac{5}{13}, y=\frac{15}{13}, z=\frac{5}{13}
\end{array}
$$

so minimum occurs at

$$
\left(\frac{5}{13}, \frac{15}{13}, \frac{5}{13}\right)
$$

6. (15 points) Let $\vec{r}(t)=\langle x(t), y(t), z(t)\rangle$ be a curve in 3-dimensional space. Let $\vec{v}(t)=\frac{d \vec{r}}{d t}$ and $\vec{a}(t)=\frac{d^{2} \vec{r}}{d t^{2}}$ denote the velocity and acceleration. Let $V(x, y, z)$ be a function of 3 variables.
Suppose that the equation

$$
\vec{a}(t)=-\nabla V(\vec{r}(t))
$$

holds for all t. Prove that

$$
\frac{d}{d t}\left[\frac{1}{2}|\vec{v}(t)|^{2}+V(\vec{r}(t))\right]=0
$$

Physics explanation (not needed to solve the problem): If $\vec{r}(t)$ represents the motion of a particle with mass $m=1$, and $V(x, y, z)$ is the potential energy function, then the expression $\frac{1}{2}|\vec{v}(t)|^{2}+V(\vec{r}(t))$ is the total energy of the particle, and $\vec{a}(t)=-\nabla V(\vec{r}(t))$ is the equation of motion (Newton's second law). So you are proving the law of conservation of energy.

$$
\begin{aligned}
\frac{1}{2}|\vec{v}(t)|^{2} & =\frac{1}{2}\left(\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}}\right)^{2} \\
& =\frac{1}{2}\left(x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}\right) \\
\frac{d}{d t}\left(\frac{1}{2}|\vec{v}(t)|^{2}\right) & =x^{\prime}(t) x^{\prime \prime}(t)+y^{\prime}(t) y^{\prime \prime}(t)+z^{\prime}(t) z^{\prime \prime}(t) \\
& =\vec{V}(t) \cdot \vec{a}(t)
\end{aligned}
$$

H/20

$$
\begin{aligned}
\frac{d}{d t} & (V(\vec{r}(t)))=\frac{d}{d t}[V(x(t), y(t), z(t)] \\
& =\frac{\partial V}{\partial x} x^{\prime}(t)+\frac{\partial V}{\partial y} y^{\prime}(t)+\frac{\partial V}{\partial z} z^{\prime}(t) \\
& =\nabla V(\vec{r}(t)) \cdot \vec{V}(t)=-\vec{a}(t) \cdot \vec{V}(t) \text { byssuptio }
\end{aligned}
$$

Add together

$$
\begin{aligned}
& \text { Add boyetler } \\
& \frac{d}{d t}\left[\frac{1}{2}|\vec{V}(t)|^{2}+V(\vec{r}(t))\right]=\vec{V}(t) \cdot \vec{a}(t)-\vec{a}(t) \cdot \vec{V}(t)=0
\end{aligned}
$$

7. (10 points Extra Credit) Does this function have a limit at (0,0)? Prove your answer.

$$
f(x, y)=\frac{x y}{x^{2}+y^{2}}
$$

Limit does not exist:
consider $x=t, y=0 \quad t \rightarrow 0$

$$
\lim _{t \rightarrow 0} f(t, 0)=\frac{x 0}{x^{2}+0^{2}}=0
$$

Consider $x=t, y=t \quad t \rightarrow 0$

$$
\lim _{t \rightarrow 0} f(t, t)=\frac{t^{2}}{t^{2}+t^{2}}=\frac{1}{2}
$$

since $\frac{1}{2} \neq 0$, the limits from two different directions do not agree, and $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ Does not exist.

