name: SOL LUTIONS
 EID:

CIRCLE YOUR UNIQUE NUMBER:

54550 (8:30-9:30) 54555 (4:00-5:00) $54560(5: 00-6: 00)$

M408D Exam $2 \quad$ Version A October 21, 2011
James Pascaleff

INSTRUCTIONS:

- Answer problems 1-6 for regular credit.
- Problem 7 is extra credit.
- Do all work on these sheets; use reverse side if necessary.
- Show all work.
- No books, notes, calculators, or other electronic devices.

Problem	Possible	Actual
1	20	
2	10	
3	20	
4	10	
5	20	
6	20	
$7(\mathrm{EC})$	$10(\mathrm{EC})$	
Total	100	

1. (a) (10 points) Find the degree 2 Taylor polynomial $T_{2}(x)$ for the function $f(x)=\sin (2 x)$ centered at $x=1$. [Note: an expression such as $\sin (2)$ cannot be simplified; feel free to leave it as it is.]

$$
\begin{aligned}
& f(x)=\sin (2 x) f(1)=\sin (2) \\
& f^{\prime}(x)=2 \cos (2 x) \\
& f^{\prime \prime}(x)=-4 \sin (2 x) \\
& f^{\prime}(1)=2 \cos (2) \\
& f^{\prime \prime}(1)=-4 \sin (2) \\
& T_{2}(x)=\sin (2)+2 \cos (2)(x-1)+\frac{(-4 \sin (2))}{2}(x-1)^{2} \\
&=\sin (2)+2 \cos (2)(x-1)-2 \sin (2)(x-1)^{2}
\end{aligned}
$$

(b) (10 points) Using Taylor's theorem and the fact that $|\cos (2 x)| \leq 1$ for any x, find an upper bound for the remainder $\left|R_{2}(x)\right|=\left|f(x)-T_{2}(x)\right|$ of the degree 2 Taylor polynomial
on the interval $|x-1| \leq \frac{1}{2}$. [Your answer should be an inequality of the form $\left|R_{2}(x)\right| \leq A$ on the interval $|x-1| \leq \frac{1}{2}$. [Your answer should be an inequality of the form $\left|R_{2}(x)\right| \leq A$, where A is some definite number.]

$$
\begin{aligned}
& f^{\prime \prime \prime}(x)=-8 \cos (2 x) \\
& \left|f^{\prime \prime \prime}(x)\right|=8|\cos (2 x)| \leqslant 8 \quad \text { for }|x-1| \leqslant \frac{1}{2}
\end{aligned}
$$

So by Taylors theorem

$$
\begin{aligned}
\left|R_{2}(x)\right| & \leq \frac{8}{3!}|x-1|^{3} \text { for }|x-1| \leq \frac{1}{2} \\
& \leq \frac{8}{3!}\left(\frac{1}{2}\right)^{3}=\frac{8}{3!} \frac{1}{8}=\frac{1}{3!}=\frac{1}{6} \\
\left|R_{2}(x)\right| & \leq \frac{1}{6} \text { for }|x-1| \leq \frac{1}{2}
\end{aligned}
$$

2. (10 points) Using the first three terms of the power series for the inverse tangent

$$
\tan ^{-1}(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}
$$

(that is, the $n=0, n=1$, and $n=2$ terms), approximate the value of the integral

$$
\begin{aligned}
& \tan ^{-1}(x) \approx x-\frac{x^{3}}{3}+\frac{x^{5}}{5} \\
& \frac{\tan ^{-1}(x)}{x} \approx 1-\frac{x^{2}}{3}+\frac{x^{4}}{5} \\
& \int_{0}^{1} \frac{\tan ^{-1}(x)}{x} d x \approx \int_{0}^{1}\left(1-\frac{x^{2}}{3}+\frac{x^{4}}{5}\right) d x \\
& =\left[x-\frac{x^{3}}{3^{2}}+\frac{x^{5}}{5^{2}}\right]_{0}^{1}=1-\frac{1}{3^{2}}+\frac{1}{5^{2}} \\
& \approx 1-\frac{1}{9}+\frac{1}{25} .
\end{aligned}
$$

3. Consider the circle given parametrically by

$$
x(t)=2 \cos (t)+2, \quad y(t)=2 \sin (t), \quad 0 \leq t \leq 2 \pi
$$

(a) (6 points) Find the center and radius of the circle. Draw a picture of it.

center $=(2,0)$
radius $=2$
(b) (7 points) Using the derivatives $x^{\prime}(t)$ and $y^{\prime}(t)$, find the points where the curve has a horizontal tangent line.

$$
\begin{aligned}
& \text { horinantal turgent line } \Leftrightarrow y^{\prime}(t)=0 \\
& y^{\prime}(t)=2 \cos (t)=0 \Rightarrow t=\frac{\pi}{2}, \frac{3 \pi}{2} \\
& \text { at } t=\frac{\pi}{2},(x, y)=(2,2) ; \text { at } t=\frac{3 \pi}{2},(x, y)=(2,-2)
\end{aligned}
$$

(c) (7 points) Using the integral formula for arclength, find the length of this curve.

$$
\begin{aligned}
L & =\int_{0}^{2 \pi} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t \\
& =\int_{0}^{2 \pi} \sqrt{(-2 \sin t)^{2}+(2 \cos t)^{2}} d t \\
& =\int_{0}^{2 \pi} \sqrt{4\left(\sin ^{2} t+\cos ^{2} t\right)} d t=\int_{0}^{2 \pi} \sqrt{4} d t \\
& =2 \int_{0}^{2 \pi} d t=2 \cdot 2 \pi=4 \pi
\end{aligned}
$$

4. (10 points) Write down, but do not evaluate an integral that represents the area between the circles defined by the polar equations $r=3 \cos (\theta)$ and $r=\cos (\theta)$.

$$
\begin{aligned}
& \text { limits of } \\
& \text { integration }
\end{aligned}
$$

$$
\theta: \frac{-\pi}{2} \rightarrow \frac{\pi}{2}
$$

$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2}[3 \cos \theta]^{2} d \theta-\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2}[\cos \theta]^{2} d \theta$

$$
=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2}\left([3 \cos \theta]^{2}-[\cos \theta]^{2}\right) d \theta
$$

$$
\begin{aligned}
& =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{-\pi}{2}\left(8 \cos ^{2} \theta\right) d \theta=4 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos ^{2} \theta d \theta \\
& \text { Also correct: } 8 \int_{0}^{\frac{\pi}{2}} \cos ^{2} \theta d \theta \quad\binom{\text { using }}{\text { symuntry }}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{a}=2 \vec{i}+5 \vec{j}-3 \vec{k} \\
& \vec{b}=2 \vec{i}-2 \vec{j}-2 \vec{k}
\end{aligned}
$$

(a) (10 points) Using the dot product, show that the angle between these vectors is $\pi / 2$.

$$
\begin{aligned}
& \vec{a} \cdot \vec{b}=2 \cdot 2+5 \cdot(-2)+(-3) \cdot(-2) \\
&=4-10+6=0 \\
& \text { so }|\vec{a}||\vec{b}| \cos \theta=0 \\
& \Rightarrow \cos \theta=0 \Rightarrow \theta=\frac{\pi}{2}
\end{aligned}
$$

(b) (10 points) Find the vector projection $\operatorname{proj}_{\vec{a}}(\vec{a}+\vec{b})$

$$
\begin{aligned}
& \operatorname{proj}_{\vec{a}}(\vec{a}+\vec{b})=\frac{[(\vec{a}+\vec{b}) \cdot \vec{a}]}{|\vec{a}|^{2}} \vec{a} \\
& (\vec{a}+\vec{b}) \cdot \vec{a}=\frac{\vec{a} \cdot \vec{a}}{\substack{n \\
|\vec{a}|^{2}}}+\frac{\vec{b} \cdot \vec{a}}{11}=|\vec{a}|^{2} \\
& 0 \text { by part (a) }
\end{aligned}
$$

So $\operatorname{proj}_{\vec{a}}(\vec{a}+\vec{b})=\frac{|\vec{a}|^{2}}{|\vec{a}|^{2}} \vec{a}=$

$$
=\vec{a}=2 \vec{\imath}+5 \vec{\jmath}-3 \vec{k}
$$

6. (20 points) Compute the volume of the parallelepiped with adjacent edges $\overrightarrow{O P}, \overrightarrow{O Q}$, and $\overrightarrow{O R}$, where

$$
P=(3,0,0), \quad Q=(0,-1,3), \quad R=(0,2,3)
$$

$$
\begin{aligned}
& \overrightarrow{O P}=\langle 3,0,0\rangle \\
& \overrightarrow{O Q}=\langle 0,-1,3\rangle \\
& \overrightarrow{O R}=\langle 0,2,3\rangle
\end{aligned}
$$

Volume $=$ absolute value of $\overrightarrow{O P} \cdot(\overrightarrow{O Q} \times \overrightarrow{O R})$

$$
\begin{aligned}
& \overrightarrow{O P} \cdot(\overrightarrow{O Q} \times \overrightarrow{O R})=\left|\begin{array}{ccc}
3 & 0 & 0 \\
0 & -1 & 3 \\
0 & 2 & 3
\end{array}\right|= \\
& =3\left|\begin{array}{cc}
-1 & 3 \\
2 & 3
\end{array}\right|-0\left|\begin{array}{ll}
0 & 3 \\
0 & 3
\end{array}\right|+0\left|\begin{array}{cc}
0-1 \\
0 & 2
\end{array}\right| \\
& =3(-1 \cdot 3-2 \cdot 3)=3 \cdot(-9)=-27 \\
& \text { Volume }=|-27|=27
\end{aligned}
$$

7. (10 points extra credit) Prove the series expansion

$$
\sqrt{2}=(1+1)^{\frac{1}{2}=1+\frac{1}{2}-\frac{1}{2 \cdot 4}+\frac{1 \cdot 3}{2 \cdot 4 \cdot 6}-\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 8}+\cdots}
$$

Binomial series for $(1+x)^{1 / 2}$

$$
\begin{aligned}
&=1+\frac{1}{2} x+\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)}{2!} x^{2}+\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right)}{3!} x^{3} \\
&+\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right)\left(\frac{1}{2}-3\right)}{4!} x^{4}+\cdots \\
&=1+\frac{1}{2} x+\frac{\frac{1}{2}\left(-\frac{1}{2}\right)}{1 \cdot 2} x^{2}+\frac{\frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{1 \cdot 2 \cdot 3} x^{3}+\frac{\frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(\frac{-5}{2}\right)}{1 \cdot 2 \cdot 3 \cdot 4} x^{4} \\
&=1+\frac{1}{2} x-\frac{1}{2 \cdot 4} x^{2}+\frac{1 \cdot 3}{2 \cdot 4 \cdot 6} x^{3}-\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 8} x^{4}+\cdots
\end{aligned}
$$

plug in $x=1$

$$
\sqrt{2}=1+\frac{1}{2}-\frac{1}{2 \cdot 4}+\frac{1 \cdot 3}{2 \cdot 4 \cdot 6}-\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 8}+\cdots
$$

